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Rectangular Waveguide with Two Double Ridges

D. DASGUPTA AND P. K. SAHA

Abstract —An eigenvahre equation of a generaf structure having two

arbitrary double ridges in a rectangular waveguide is derived. The cntoff

wavelengths of two speeiat cases with two symmetrically placed identical

double ridges is computed numerically and their bandwidths are compar~d.

The numencaf solution of the eigenvector is also discussed and utilized in

determining the gap impedance. As an example of the applications of such

ridged wavegnides, two varactor-tuned Gunn oscillators are briefly re-

ported.

1. INTRODUCTION

FKecently, the authors presented an analysis based on Mont-
gomery’s work [1] for determining the eigenvrdue spectrum of a
rectangular waveguide with two symmetrically placed identical
double ridges [2]. The numerical results indicated that such a
waveguide would have adequate bandwidth for application in
solid-state microwave oscillators. This structure can be gener-
alized by considering two different double ridges at arbitrary
locations in the waveguide. The structure treated in [2], [3] is then
a special case of this general configuration. Another special case
results when one of the two identical double ridges is inverted
with respect to the other. The calculations show that the latter
structure has a larger bandwidth compared to the former. In

addition, some results on the calculation of the gap impedance
are also presented. Following the analysis given in [2], we present
on~y the final matrix eigenvalue equations without going into
details.
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II. IUDGED WAVEGUIDE

The generalized double-ridged waveguide structure is shown in
Fig. l(a). Two special cases, shown in Figs. l(b) and l(c), are
referred to as” regular” and” inverted” structures, respectively.

III. THEORY

A. Matrix Eigenualue Equation

To solve the integral eigenvalue equation for TE modes by the

Ritz-Galerkin technique, the transverse electric field at the kth
aperture of the j th ridge (j, k =1,2) is expanded as

Njk

-E’’,k(y)= ~ cj~’k)cos;(y–hj).
jet) J

(1)

The resulting matrix equation for the eigenvalue kc then takes the

form

[H(kc)]C=’O. (2)

The vector C in (2) is given by

c = [ C(1!1)TC(132)TC(2$1)TC(2>2)T]~ (3)

where the superscript T denotes the transpose, [H] is a matrix
having the following partitioned form:

[1
HIH200

[H]=~gg:7. (4)

o 0 H7 H8

The eigenvalue equation is then

det [H(kc)] = O. (5)
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Fig. 1. (a) Rectangulm wavegnide with two double ridges. (b) “Regular”
structure: k, = h 7 = h. (c) “Inverted” structure: hl = b2= h with dl = rf2 = d,
sl=sz=sanda; =w.

In order to present the matrix elements in a compact form, let
us assume Njk = N for allj, k. The elements of the (N+ 1) x (N +

1) submatrices are then given by the following expressions:
m

m=o

H

, ‘-’q’c~lk.rk.:j-’
2ql

H = - g Smx ,qmx ,,m
4ql ~=o
5 2 1

where

Aq[ = H2#os kXlqsl

Bql = H7q~COSkX2qs2

Um= g~cot k,.~ql

V~ = qn,cot ktX#

(6a)

(6b)

(6c)

(6d)

(6e)

(6f)

(7a)

(7b)

(7C)

(7d)

Tn,= gmcot ktYmw (7e)

S., = gm /sin k,Xmt (7f)

g., = (%bk,x~)-l (7g)

Cm=l, ifrn=O; 1/2, ifm#O (7h)

+qn, = jh’ + ‘, ~Cosw(y–h, )cosyydy
h,

(8)

k:= k}Xm+ (mm/b)’ = k?&+ (qm/dl)2 = k~2q + (q~/d2)2.

(9)

The corresponding expressions for the TM modes are obtained
by replacing cos by sin functions in (1) and (9), and the functions
of the form (xsinx)-l and (cot x)/x are replaced by x/sin x
and x cot x, respectively, in (6) and (7).

B. Solution of Eigenvector

To solve the eigenvector C, one particular component C} J”)
(1=0,1,... ,N for TE; 1,2,.0. ,N for TM) is made aritrary. The
other components of C are then expressed in terms of C{J”1 by

solving the following set of matrix equations, which are easily
obtained from (2):

[H1~~]C}l)+ [H2~~]C~’2)= - [HmO]CP’)

.[H2NN]C#’1)+ [H, NN]C:2)+[H,NN]C j2’1~

= - [.H,NO]C}1>2) - [H, No] C\2’1)

.[H,NN]C;’2)+[H, NN]C#!l)+ [H,NN]C#’2)

= - [H, NO]C}12)-[H,NO]C)2,1)

[H,NN]C,$’l) + [HSNN]CA2’2) = - [H8NO]C)2’2). (lo)

In (10), HpNN(p ‘1,2, - o‘, 8) is the matrix derived from the
submatrix HP by deleting the lth row and lth column; HPN is the

column vector derived from the lth column of Hp by deleting
the lth, and C~’ ~) is the column vector derived from C(J$ ~~ by

deleting the lth row.

C. Gap Impedance

The dominant mode gap is impedance Zg is defined as

2s. = v;/2 F’. (11)

where POis the power propagating in the guide, and VOis the gap

voltage defined through

Vo=~h’deY(xy)dy (x in gap). (12)
h

If the basis fields are made orthonormal, then, following
Montgomery [1], Zg can be expressed in terms of CJJ”) as given
below. At x = al + Psi, 0< p <1 for the first gap

%=%+ ”[1-(A,A )’]-1/’c (13a)

where Zgl(@ ~ is the gap impedance at infinite frequency and is

given by

120rd:
z gl(m) = ~ [C#+l)sinkCsl(l - p)+ C$’2)sinkCs1p]2.

sin2 kcsl

(13b)

For the sec~; gap, that is, at x = a2 + PS2, Zgz is obtained b

‘1’2), dl, and S1 by C~2>1~,Coreplacing CO ‘ , CO ‘2’2), dz, and Sz,
respectively, in (13b).
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TABLE I

NORMALIZED CUTOFFWAVELENGTHSFORTHE DOMSNANTTE
(A, _/a) AND THE FIRST HIGHER ORDER MODE (A C+/a) AND

PERCENT BANDWIDTH (B) FOR b/a = 0.5, d/b= 0.1, s/a= 0.125

COMPUTED WITH N =5, M = 10

t,la=.125 t/1=. 250 t,i3=. j’75 t,?,=. ~oo t,/4=. 5?5 t/3=.750
;1/b 3truetur2

1 5.429 2.645 59.0 5.065 3.065 49.2 4.5?7 3.1X 34.4 3.’352 3.045 ?2.8 3.014 2.643 13.1 1.554 1.060 ?8.4
0.3

I 6.244 2..:15 21.8 j..i.lO ?.321 59.2 4.554 3.112 39.1 3.393 3.030 25.0 3.029 2.531 14.1 1.555 1.048 39.6

R 4.9X 2.230 74.6 4.596 2.706 51. f3 .; . ,j~z 2.338 36. o 7.449 2.706 24. I 2.548 2.230 15.0 1.560 1.0?6 41.2
0.7

I 5.467 2.074 90.0 4.755 2.607 58.4 4.145 2.739 39,1 3.474 2.634 25.6 2.657 2.270 15.7 1.560 1.021 41.8

R 4.914 2.102 80.2 4.505 2.567 54.9 >.372 2.707 >7.9 3.320 2.567 25.6 2.494 2.102 17.2 1 .559 0.9’3” 43.8
0.5

I 4.949 2.096 al .4 4.514 2.561 55.2 >.975 2.705 38.0 3.322 2.566 25.7 2.494 2.101 17.1 1.559 0.922 43. e

0,45 R, I 4.921 2.097 30.5 4.511 2.556 55.0 >.575 2.7’37 39.0 3.321 2.556 ~5.7 ~.4’31 ~.oL37 17.2 1 .559 0. ?27 43.9

Structure: R —REGULAR, 1—INVERTED

6,8 I I
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Fig. 2. Variation of normalzed cutoff wavelength (X,/a) of dominant TE
mode with ridge spacing (r/a ) in regul= and inverted guides

IV. NUMERICAL RESULTS

A. Cutoff Wavelength and Bandwidth

The matrix eigenvalue equation was solved [2] to determine the

normalized cutoff wavelengths (A, _/a ) of the dominant TE

mode and (A, +/a ) of the next higher order mode for both the

“regular” and “inverted” structures. For a fixed ridge width s/a

and a fixed gap width d/b, the gap location h/b and the ridge

spacing t/a were varied, including the case when the ridges are @

contact with the sidewalls. The percent bandwidth B was calcu-

lated from

B=200X(k, _–&+)/(~C. +~c+). (14)

The results of computation are given in Table I. In all the cases

tabulated, the first higher order mode is TE. The variation of

(A, _/a) is also shown graphically in Fig. 2. The computations

1
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:
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“
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Normalized gap width (d/b)

Fig 3. Variation of percent bandwidth (B), normalized cutoff wavelength
(A C_/a) and dominant TE-mode gap impedance Zg(~ with normalized gap

iwith (d/b). b/a = 0.5, s/a = 0.125 .—Zg(m). –––-( .–/a).—--— B. The
parameters indicated in parentheses refer to the type of structure, and the
value of ridge spacing t/a.

were carried out with six terms in the aperture field expansion

(N= 5) and 11 terms for the trough region field (M= 10). The

relative convergence behavior is similar to that reported in [2] and

the values of A, /a obtained with N =10 differ from those in

Table I by less than 1 percent. We observe that the inverted

stmcture always shows better bandwidth than that of its regular

counterpart. The improvement is most significant when the ridge

spacing is small (t/a < 0.5) because of increased capacitive load-

ing of the guide. For the ridge parameters chosen, the bandwidth

is the largest (92 percent) for an inverted structure with two

single ridges antisymmetrically placed at t/a = 0.125. This may

be comp~ed with the bandwidth of 69 percent for the corre-

sponding regular structure with identical parameters. In regular

configuration, the maximum bandwidth available is 81 percent
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when the gaps are centered or each ridge is a symmetrical double
ridge. Some additional information is given in Fig. 3, where, for a
fixed ridge width (s/a) and two values of ridge spacing (t/a),

the variations of the normalized cutoff wavelength (A, _/a) and

the bandwidth B with gap width (d/b) are shown for a regular

structure with two symmetrical double ridges and an inverted

structure with two single ridges.

B. Eigenvector and Gap Impedance

To solve the eigenvector CM’) in (10) was expressed in terms
of c/J’k’ and inverted submatrices after further manipulations.
However, these expressions were not useful for numerical compu-
tation, as the diagonal elements of diagonal matrices HJ and H,
are rdl zero after the first few leading elements, which cause
failure in numerical inversion. The actual computation of the
eigenvector components was carried out by a Gauss–Siedel itera-
tion of (10) with C}j”) made arbitrary successively (usually unity

prior to normalization of the eigenvector). The matrix [H] being
diagonally doihinant, the convergence was excellent.

The variation of Zg(m) at the gap center (P = 0.5) with (d/b)
for the dominant TE mode in an inverted structure with two

single ridges is shown in Fig. 3. For a given set of parameters

(t/a), (s/a), and (d/b), this impedance is found to be almost
independent of gap height (h/b), that is, almost identical for the
reguhw and inverted structures. For given (s/a) and (d/b),
however, it varies considerably with ridge spacing (t/a) in either
case. The impedance curves in Fig. 3 also closely depict those for
the regular structure with two symmetrical double ridges of
identical parameters, with the difference of impedance in the two
cases being less than 0.5 percent.

V. RJDGED WAVEGUJDE VARACTOR-TUNED GUNN

OSCILLATOR

In this section, some preliminary experimental results obtained

with two empirically-designed XN-band varactor-tuned Gunn

oscillators in fixed-length ridged-waveguide resonators are pre-

sented. The device mounts were not optimized and the choice of

ridge parameters was guided purely by mechanical considera-

tions. Fig. 4(a) shows the schematic diagrams of the device mount

in an inverted ridged WR-137 waveguide resonator (referred to as

oscillator A). For the oscillator with a Tesonator in regidar

configuration (referred to as oscillator B), all the dimensions

except the ridge spacing were identical. The performance of these

two oscillators is shown in Fig. 4(b), where the measured shift in

oscillation frequency and the output power are plotted as func-

tions of varactor bias.

VI. CONCLUSIONS

The Ritr-Galerkin technique has been applied to determine

the eigenvalues of a rectangular waveguide with two double

ridges located arbitrarily. When two identical, asymmetric double

ridges are placed symmetrically, considerable improvement in

bandwidth occurs if one ridge is inverted with respect to the

other. The best result is obtained when two single ridges are

closely spaced in an inverted configuration. The eigenvector has

been obtained by iteration of the matrix equations and has been

used in determining the gap impedance. Finally, the same pre-

liminary results obtained with two XN-band varactor-tuned Gtmn

oscillators in regular and inverted ridged resonators have been

presented. Though there is scope for optimization of the device

mounts, the results are certainly promising for such applications

of the ridged waveguides.

(a)

(b)
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437 TAPERED CAVITY

RIDGE
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02 4 14

Varoctor bias VB (vOlk. )

Fig. 4. (a) Varactor-tuned Gunn oscillator in inverted waveguide resonator
(wavegnide: WR-137). s = 0.25 in, d = 0.1 in, I = 1.75 in, L = 0.875 in 1=
0.157 in (OSC.A); 0.295 in (OSC.B). (b) Variation of frequeney shift and
power output with varactor bias ( VB). Frequency of oscillation at VB = 0.4
V: 7.495 GHz (OSC.A); 7.20 Gffz (OSC.B). Varactor diode: AEI DC 4201B,
Gunn diode: MA 49151 (OSC.A); MA 49156 (OSC.B).
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Mutual Impedance Computation BetweenMicroStrip
Antennas
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Abstract —A moment-method solution for the mutual coupling between

rectangular microstrip antennas is presented. The grounded dielectric slab

is accounted for exaetIy in the anatysis.
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