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Short Papers

Rectangular Waveguide with Two Double Ridges
D. DASGUPTA anp P. K.SAHA

Abstract —An eigenvalue equation of a general structure having two
arbitrary double ridges in a rectangular waveguide is derived. The cutoff
wavelengths of two special cases with two symmetrically placed identical
double ridges is computed rimmerically and their bandwidths are compared.
The numerical solution of the eigenvector is also discussed and utilized in
determining the gap impedance. As an example of the applications of such
ridged waveguides, two varactor-tuned Gunn oscillators are briefly re-
ported.

I. INTRODUCTION

tecently, the authors presented an analysis based on Mont-
gorery’s work [1] for determining the eigenvalue spectrum of a
rectangular waveguide with two symmetrically placed identical
double ridges [2]. The numerical results indicated that such a
waveguide would have adequate bandwidth for application in
solid-state microwave oscillators. This structure can be gener-
alized by considering two different double ridges at arbitrary
locations in the waveguide. The structure treated in [2], [3] is then
a special case of this general configuration. Another special case
results when one of the two identical double ridges is inverted
with respect to the other. The calculations show that the latter
structure has a larger bandwidth compared to the former. In
addition, some results on the calculation of the gap impedance
are also presented. Following the analysis given in [2], we present
only the final matrix eigenvalue equations without going into
details. ! »
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IL R'IDGEIV) WAVEGUIDE

The generalized double-ridged waveguide structure is shown in
Fig. 1{a). Two special cases, shown in Figs. 1(b) and 1(c), are
referred to as “regular” and “inverted” structures, respectively.

III. - THEORY

A. Matrix Eigenvalue Equatién

To solve the integral eigenvalue equation for TE modes by fthc .
Ritz—Galerkin technique, the transverse eléctric field at the kth
aperture of the jth ridge (j, k =1,2) is expanded as

N,

E.()=3

i=0

1)

Ci(f”‘)cos%(y —hy).
y ‘

The resulting matrix equation for the eigenvalue k. then takes the
form

[H(k)]C=O0. o)
The vector C in (2) is given by
C = C(l,l)TC(l,2)Tc(2,1)TC(2,2)T] T 6)

where the superscript T denotes the traﬁspose, [H] is a matrix
having the following partitioned form:

H H, 0 0

H, H, H, 0
[H]= 0 H H H @
0 0 H, H
The eigenvalue equation is then
det[ H(k,)]=0. (5)
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Fig. 1. (a) Rectangular waveguide with two double ridges. (b) “Regular”
structure: Ay = h, = k. (¢) “Inverted” structure: hy = by = h with dy=d, =d,
s;=s;=sand g, =w.

In order to present the matrix elements in a compact form, let
us assume N, = N for all j, k. The elements of the (N +1)X(N +
1) submatrices are then given by the following expressions:

%0
Hy,=A,+ > U X gmXipm (6a)
m=0
0
H3ql = Aql + Z Vleqlelm (Gb)
m=0
o0
H6ql = Bql + Z Vm qumXZIm (60)
m=0
' 0o
HSqI = Bql + Z TmXquXZIm (6d)
m=0
-1
H =-108,¢€ sin 6e
240 a1l |\ K xlg k g 1) (6¢)
7 2 2 2 2
00
H =-Y 8, (6£)
4ql m=0 1gm 2Im
5 2 1
where
)
Ay = H, ;008 kyy 451 (72)
B, = Hy,cos k5,58, (7b)
Um =8&mn cot ktxmql (7C)
Vm = qIﬂCOt ktxmt (7d)

939

Sm = gm/Sin ktxmt (7f)
-1

grn = (Embktxm) (7g)

¢, =1, ifm=0; 172, ifm#0 (7h)
h o +d q7f mm
Xow=1" Z—{y— =z

Ciam fh, ,  cos dj(y h,)cos A (8)

k2= ki + (ma/b) = k2, + (gn/d) = k2, + (qn/d,)”.

)

The corresponding expressions for the TM modes are obtained
by replacing cos by sin functions in (1) and (9), and the functions
of the form (xsinx)~! and (cot x)/x are replaced by x/sin x
and xcot x, respectively, in (6) and (7).

B. Solution of Eigenvector

To solve the eigenvector C, one particular component Cf/+©)
1=0,1,---,N for TE; 1,2,- -+, N for TM) is made aritrary. The
other components of C are then expressed in terms of C{/'%) by
solving the following set of matrix equations, which are easily
obtained from (2): '

[Hnn €8P + [ Hyyy 1CYP = - [HinolCMY
[ Hyww 1OV + [ Hyyn 12 + [ Hawn ] GV
= —[Hypno]C — [Hyno1CHY
[ Hsun 18P + [ Hoyn ] CF P + [ Hyw 1€
= = [Hspyo ]2 = [ Hopo 1CEP

[H7NN]C1$2’1) + [HSNN]CI(VZ’Z) == [HSNO]CI(2'2)~ (10)

In (10), H,yn(p=1,2,---,8) is the matrix derived from the
submatrix H, by deleting the /th row and /th column; H,, is the
column vector derived from the /th column of H, by deleting
the /th, and C{** is the column vector derived from CV*% by
deleting the /th row.

C. Gap Impedance
The dominant mode gap is impedance Z, is defined as
Z,=V/2P, (11)
where P, is the power propagating in the guide, and V; is the gap
voltage defined through
h+d
B= [ e ey (12)

If the basis fields are made orthonormal, then, following
Montgomery [1], Z, can be expressed in terms of C§/** as given
below. At x = a; + ps;, 0 < p <1 for the first gap

2] —-1/2
Zgl = Zgl(oo)' [1— (A/AL) ]

where Z,;,, is the gap impedance at infinite frequency and is
given by

(x in gap).

(13a)

1207d}

— [ c§Vsin ks (1 p)+ CHPsin kcslp]z.
sin” k.5,

gl(0) =

(13b)

For the second gap, that is, at x = a, + ps,, Z,, is obtained by

replacing C{Y, C+?, di, and s, by C$*Y, C#*?, d,, and s,,
respectively, in (13b).
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TABLEI
NORMALIZED CUTOFF WAVELENGTHS FOR THE DOMINANT TE
(A,_/a) anD THE FIrsT HIGHER ORDER MODE (A, /a) AND
PERCENT BANDWIDTH (B) FORb/a=0.5,d/b=01,s/a= 0125
COMPUTED WITH N =5, M =10

t/a=.125 t/a=,250 t/a=.375 t,/2=,500 t/a=.425 t/3=.750
n/b  3tructurs
Kt 5.429}2.545]53.0 | 5.065|3.065] 43.2 4.527|3.19¢| 34.4 | 3.352} 3.055} 22.8 3.014[2.5451173.1[1.554]1.060]38.4
0.2
I 6.24412.215)21.8 { 5.340]2.3011 59.2 4.534]3.413(39.1 § 3.393}3.030] 25.0 3.029|2.631]14.111,555]1,043(39.6
R 4.99212.230]|74.6 | 4.586[2.705]| 51.8 1.032]2.338136.0 | 3.449]2.706]24.1 2.648]12.230[15.0(1.560}1.026 41,2
0.7
I 5.46712.074}90.0 | 4.755]2.607| 58.4 4,14512.739]39.1 } 3.474|2.634{25.6 2.657)2.270115.7|1.560[1.021]41.8
R 4.91412.102]30.2 | 4.505] 2.5671 54.3 3.372]12.707|3749 | 3.320(2.567}25.6 2.494[2,102|17.2{1.559(0. 79 143.8
0.5
I 4.949]2.036]81.4 | 4.514} 2.561] 55.2 3.975]12.705{38.0 | 3.322|2.566|25.7 2,49412.101 {17.1[1.559]0.992{45.8
0.45< R,1 4.92112,0971530.5 | 4.511[2.566] 55,0 3.97512.707}38,0 | 3.321]2.566]25.7 2,42112,097[17.2{1.559{0.207143.9
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IV. NuUMERICAL RESULTS

A. Cutoff Wavelength and Bandwidth

The matrix eigenvalue equation was solved [2] to determine the
normalized cutoff wavelengths (A,_/a) of the dominant TE
mode and (A, /a) of the next higher order mode for both the
“regular” and “inverted” structures. For a fixed ridge width s /a
and a fixed gap width d /b, the gap location & /b and the ridge
spacing ¢ /a were varied, including the case when the ridges are in
contact with the sidewalls. The percent bandwidth B was calcu-
lated from

B=2OOX(>\L‘_AC+)/(>\L-+A(+)' (14)
The results of computation are given in Table I. In all the cases

tabulated, the first higher order mode is TE. The variation of
(A._/a) is also shown graphically in Fig. 2. The computations

(A._/a) and dominant TE-mode gap impedance Zg ., with normalized gap

with (d/b). b/a=05,s/a=0125—Z . ————(A, /a).—-— B. The
parameters indicated in parentheses refer to the type of structure, and the
value of ridge spacing ¢/a.

were carried out with six terms in the aperture field expansion
(N =35) and 11 terms for the trough region field (M =10). The
relative convergence behavior is similar to that reported in [2] and
the values of A, /a obtained with N =10 differ from those in
Table I by less than 1 percent. We observe that the inverted
structure always shows better bandwidth than that of its regular
counterpart. The improvement is most significant when the ridge
spacing is small (¢/a < 0.5) because of increased capacitive load-
ing of the guide. For the ridge parameters chosen, the bandwidth
is the largest (92 percent) for an inverted structure with two
single ridges antisymmetrically placed at z/a = 0.125. This may
be compared with the bandwidth of €9 percent for the corre-
sponding regular structure with identical parameters. In regular
configuration, the maximum bandwidth available is 81 percent
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when the gaps are centered or each ridge is a symmetrical double
ridge. Some additional information is given in Fig. 3, where, for a
fixed ridge width (s/a) and two values of ridge spacing (z/a),
the variations of the normalized cutoff wavelength (A _/a) and
the bandwidth B with gap width (d/b) are shown for a regular
structure with two symmetrical double ridges and an inverted
structure with two single ridges.

B. Eigenvector and Gap Impedance

To solve the eigenvector C{/>® in (10) was expressed in terms
of C{*% and inverted submatrices after further manipulations.
However, these expressions were not useful for numerical compu-
tation, as the diagonal elements of diagonal matrices H, and H,
are all zero after the first few leading elements, which cause
failure in numerical inversion. The actual computation of the
eigenvector components was carried out by a Gauss—Siedel itera-
tion of (10) with C{/** made arbitrary successively (usually unity
prior to normalization of the eigenvector). The matrix [ H] being
diagonally dominant, the convergence was excellent.

The variation of Z,, at the gap center (p =0.5) with (d/b)
for the dominant TE mode in an inverted structure with two
single ridges is shown in Fig. 3. For a given set of parameters
(t/a), (s/a), and (d/b), this impedance is found to be almost
independent of gap height (% /b), that is, almost identical for the
regular and inverted structures. For given (s/a) and (d/b),
however, it varies considerably with ridge spacing (¢/a) in either
case. The impedance curves in Fig. 3 also closely depict those for
the regular structure with two symmetrical double ridges of
identical parameters, with the difference of impedance in the two
cases being less than 0.5 percent.

V. RIDGED WAVEGUIDE VARACTOR-TUNED GUNN
OSCILLATOR

In this section, some preliminary experimental results obtained
with two empirically-designed XN-band varactor-tuned Gunn
oscillators in fixed-length ridged-waveguide resonators are pre-
sented. The device mounts were not optimized and the choice of
ridge parameters was guided purely by mechanical considera-
tions. Fig, 4(a) shows the schematic diagrams of the device mount
in an inverted ridged WR-137 waveguide resonator (referred to as
oscillator A). For the oscillator with a resonator in regular
configuration (referred to as oscillator B), all the dimensions
except the ridge spacing were identical. The performance of these
two oscillators is shown in Fig. 4(b), where the measured shift in
oscillation frequency and the output power are plotted as func-
tions of varactor bias.

V1. CONCLUSIONS

The Ritz—Galerkin technique has been applied to determine
the eigenvalues of a rectangular waveguide with two double
ridges located arbitrarily. When two identical, asymmetric double
ridges are placed symmetrically, considerable improvement in
bandwidth occurs if one ridge is inverted with respect to the
other. The best result is obtained when two single ridges are
closely spaced in an inverted configuration. The eigenvector has
been obtained by iteration of the matrix equations and has been
used in determining the gap impedance. Finally, the same pre-
liminary results obtained with two XN-band varactor-tuned Gunn
oscillators in regular and inverted ridged resonators have been
presented. Though there is scope for optimization of the device
mounts, the results are certainly promising for such applications
of the ridged waveguides.
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Fig. 4. (a) Varactor-tuned Gunn oscillator in inverted waveguide resonator

(waveguide: WR-137). s =025 in, d=0.1 in, /=175 in, L=0875in ¢t =
0.157 in (OSC.A); 0.295 in (OSC.B). (b) Variation of frequency shift and
power output with varactor bias (V). Frequency of oscillation at V3 =04
V: 7.495 GHz (OSC.A); 7.20 GHz (OSC.B). Varactor diode: AEI DC 4201B,
Gunn diode: MA 49151 (OSC.A); MA 49156 (OSC.B).

ACKNOWLEDGMENT:

The authors are thankful to Professor B. R. Nag for his
encouragement during the work, and to the Computer Centre,
Calcutta University, for the use of their IBM 1130 computer, The
helpful suggestions from the reviewers are very much appreciated.

REFERENCES

(11 J. P. Montgomery, “On the complete eigenvalue solution of ridged wave-
guide,” IEEE Trans. Microwave Theory Tech., vol. MTT-19, pp. 547-555,
June 1971.

(2] D. Dasgupta and P. K. Saha, “Eigenvalue spectrum of rectangular wave-
guide with two symmetrically placed double ridges,” JEEE Trans. Micro-
wave Theory Tech., vol. MTT-29, pp. 47-51, Jan. 1981,

[3] E. V. Jull, W. J. Bleackley, and M. M. Steen, “The design of waveguide
with symmetrically placed double ridges,” IEEE Trans. Microwave Theory
Tech., vol. MTT-17, pp. 397-399, July 1969.

Mutual Impedance Computation Between Microstrip
Antennas

E. H NEWMAN, MEMBER, IEEE, J. H. RICHMOND, FELLOW, IEEE,
AND B. W. KWAN "~

Abstract —A moment-method solution for the mutual coupling between
rectangular microstrip antennas is presented. The grounded dielectric slab
is accounted for exactly in the analysis.
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